LEWIS ACID-CATALYSED REARRANGEMENT OF STEROIDAL OXETANES: REVISION OF THE COURSE OF SOLVOLYSIS OF 3B-TOSYLOXY-5B-CHOLESTAN-5-OL-6-ONE.

Richard W.G.Foster and Brian A.Marples,* Department of Chemistry, The University of Technology, Loughborough

Summary The BF₃-catalysed rearrangement of 6 β -acetoxy-3 α ,5-epoxy-5 α -cholestane gave the 3α ,5 β -diol, the 3α ,10 α -epoxide, and the 2α ,5 α -epoxide, and the product of solvolysis of 3 β -tosyloxy-5 β -cholestan-5-ol-6-one was identified as 3α ,5-epoxy-A-homo-B-nor-5 α -cholestan-4a-one.

The reaction of 3α ,5-epoxy-5 α -cholestane (1) with BF₃.Et₂0 was reported, by Henbest and coworkers, to give epicholesterol.¹ However, the 3β ,5 β -oxetan-6-one (7), which was prepared by solvolysis of 3β -tosyloxy-5 β -cholestan-5-ol-6-one (5) was reported to be unreactive towards BF₃.Et₂0 and the 6α -acetoxy- 3β ,5 β -oxetane (8) and its trifluoroacetoxy analogue, which were prepared from (7) by reduction and acylation, were unreactive towards a number of acidic reagents.² We have shown³ that the rearrangements of some steroidal 5,6-epoxides are influenced markedly by electron withdrawing groups at C-3 and we were interested to determine whether the lack of reactivity of the 3β ,5 β -oxetanes related to the electron withdrawing groups at C-6 or to the configuration of the 3,5-epoxide bridge as suggested by Rowland.² Accordingly, we have investigated the BF₃-catalysed rearrangement of the 6β -acetoxy- 3α , 5α -oxetane (2).⁴ Our method of preparation of (2) differed slightly from that previously reported.⁴ Monoperphthalic acid oxidation of cholesteryl tosylate gave the 5ξ , 6ξ -epoxides which were hydrolysed to the 3β -tosyloxy- 5α , 6β -diol (\hat{n}).⁵ Reaction of the compound (6) with Bu^LOK/Bu^LOH gave the 6β -hydroxy- 3α , 5α -oxetane (3) which on acetylation gave the required acetate (2).

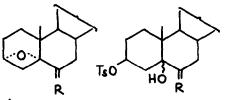
Reaction of 6β -acetoxy- 3α , 5α -oxetane (2) in benzene with BF₃.Et₂0 gave essentially the 6β -acetoxy- 3α , 5β -diol(9)(26%), the 6β -acetoxy- 3α , 10α -epoxide (12) (16%),⁶ and the 6β -acetoxy- 2α , 5α -enoxide (13) (10%). The structure of the 6β -acetoxy- 3α , 10α -epoxide (12) was confirmed by its

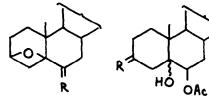
[†] Part of this work was reported at the East Midlands Meeting of the Perkin Division of The Chemical Society at Nottingham on December 18th, 1978.

spectroscopic data and its m.p. and mixed m.p. with an authentic sample.[‡] The structure of the 6B-acetoxy- 3α , 5B-diol (9) was confirmed by its conversion <u>via</u> the ketol (10) into the known⁷ 6B-acetoxycholest-4-en-3-one (15). The compound (15) was also prepared from 6β -acetoxy- 5α -cholestane- 3β , 5-diol <u>via</u> the ketol (11)⁸ which was shown to be different from the ketol (10). The structure of the 6β -acetoxy- 2α , 5α -epoxide (13) was established by comparison with a sample prepared by Pd/C-hydrazine debromination of the 6β -acetoxy- 3ξ -bromo- 2α , 5α -epoxides (14).⁹

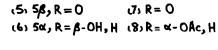
The rearrangement of the 6 β -acetoxy-3 α ,5 α -oxetane (2) (Scheme 1) presumably proceeds <u>via</u> cleavage of the C-5-0 bond, or, to a lesser extent, the C-3-0 bond leading to the C-5 or the C-3 carbonium ions.** The C-5 carbonium ion may rearrange to the C-10 carbonium ion and the 3,10-ether (12) or it may be trapped by the 6 β -acetoxy-group leading to the relatively stable acetoxonium ion (6) which, on aqueous work-up, would give the 6 β -acetoxy-3 α ,5 β -diol (9). The C-3 carbonium ion could rearrange by a hydride shift to the C-2 carbonium ion and the 2,5-ether (13). The intermediacy of the acetoxonium ion (16) was supported by isolation of the dioxolane (17) when the rearrangement was carried out in ether in the presence of NaBH₄. The ¹H n.m.r. spectrum of the dioxolane (17) showed characteristic signals at δ 5.12 (q, MeCHO₂) and δ 1.43 (d, MeCHO₂).

Since the rearrangement of the 6β -acetoxy- 3α , 5α -oxetane (2) proceeded quite smoothly, we suspected the structural assignments of the 3β , 5β -oxetanes (7)[§] and (8). A study of models and comparison of the spectroscopic data (Table) for the 3β , 5β -oxetan-6-one (7) and the 3α , 5α -oxetan-6-one (4) which was prepared from (3) by oxidation, led to the conclusion that the solvolysis product (7) should be formulated as the A-homo-B-nor- 3α , 5α -epoxide (18). This could arise by the rearrangement¹² shown in Scheme 2 which would allow normal intramolecular concerted displacement of the tosyloxy-group. Table

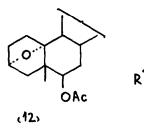

Compound	δ		
	3-н	4-н	^v max _{cm} -1
4	4.45, d(br), J∿7 Hz	α3.0, q, J~10 and 7 Hz; β1.86, d, J~10 Hz	1723
7/18	4.67, t(br), J∿7 Hz	2.62,q, J∿18 and 7 Hz; 2.08, d, J∿18 Hz	1750

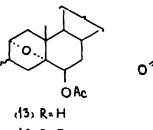

NaBH₄ reduction of the solvolysis product (18) gave a single alcohol (20)² and, as would be expected, the 10-Me signal in the ¹H n.m.r. spectrum was considerably downfield (δ 1.05) from that in the parent ketone (δ 0.73). Further support for the structure (18) was indicated by deuteriation in Et₃N/D₂O/dioxan. Even after several treatments, the 4 α -monodeuterio-analogue (19) was largely

§ We are extremely grateful to Professor A.T.Rowland for a generous sample.

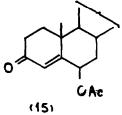

[‡] Kindly provided by Professor E.Glotter.

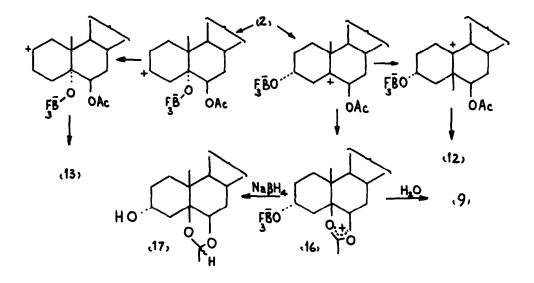
^{**} It is not known to what extent the subsequent rearrangements are concerted with these initial cleavages.



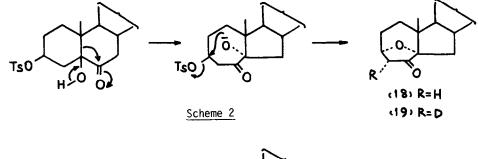


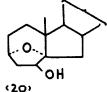
(1) $R = H_2$ (2) R= \$-OAc,H (3) R= β- OH,H (4) R= 0




(9) 5\$, R= «- OH $(10)5\beta$, R= 0 (11) 50, R= 0

(14) R= Br





Scheme 1

obtained as indicated by the mass spectrum and by the ¹H n.m.r. spectrum in which the 3-H signal was a broadened doublet (major residual coupling to 2α -H) and the 4β -H signal (δ 2.08) was a broadened singlet. As expected the signal for the 4α -H (δ 2.62) had disappeared. The reluctance of the 4β -H to exchange significantly presumably relates to the hindered nature of the base and of the β -face of the 4,4a-enolate. The loss of CO and C_4H_5D in the mass spectrum of (19) gives the base peak at m/e 318 and further supports the structural assignment.

During the preparation of this manuscript an independent correction of the structure (7) has been reported. 13

References:

- 1. R.B.Clayton, H.B.Henbest, and M.Smith, J.Chem.Soc., 1957, 1982.
- 2. A.T.Rowland, Steroids, 1966, 7, 527.
- 3. I.G.Guest and B.A.Marples, J.C.S.Perkin I, 1973, 900.
- 4. P.Tsui and G.Just, Canad.J.Chem., 1973, 51, 3502.
- 5. R.Bourdon and G.Ranisteano, Bull. Soc. chim. France, 1960, 1977.
- 6. A.Schwartz and E.Glotter, J.C.S.Perkin I, 1977, 2470.
- 7. T.Koga and M.Tomoeda, J.C.S.Perkin I, 1973, 1848.
- 8. B.Ellis and V.Petrow, J.Chem.Soc., 1939, 1078.
- Prepared by the same method as the corresponding benzoate:
 P.Kočovský and V.Černý, Coll.Czech.Chem.Comm., 1977, 42, 353.
- 10. J.M.Coxon, M.P.Hartshorn, and C.N.Muir, Tetrahedron, 1969, 25, 3925.
- 11. T.H.Campion, G.A.Morrison, and J.B.Wilkinson, J.C.S.Perkin I, 1976, 2509.
- 12. Y. Mazur and M. Nussim, Tetrahedron Letters, 1961, 817.
- 13. V.Dave and E.W.Warnhoff, J.Org.Chem., 1978, 43, 4622.

(Received in UK 30 March 1979)